
 
 

 

  

Abstract—In the past, we proposed a genetic-fuzzy 
data-mining algorithm for extracting both association rules and 
membership functions from quantitative transactions under a 
single minimum support. In real applications, different items 
may have different criteria to judge their importance. In this 
paper, we thus propose an algorithm which combines clustering, 
fuzzy and genetic concepts for extracting reasonable multiple 
minimum support values, membership functions and fuzzy 
association rules form quantitative transactions. It first uses the 
k-means clustering approach to gather similar items into groups. 
All items in the same cluster are considered to have similar 
characteristics and are assigned similar values for initializing a 
better population. Each chromosome is then evaluated by the 
criteria of requirement satisfaction and suitability of 
membership functions to estimate its fitness value. 
Experimental results also show the effectiveness and the 
efficiency of the proposed approach. 

I. INTRODUCTION 

Data mining is commonly used for inducing association 
rules from transaction data. An association rule is an 
expression X→Y, where X is a set of items and Y is a single 
item. It means in the set of transactions, if all the items in X 
exist in a transaction, then Y is also in the transaction with a 
high probability [1]. Most previous studies focused on 
binary-valued transaction data. Transaction data in real-world 
applications, however, usually consist of quantitative values. 
Designing a sophisticated data-mining algorithm able to deal 
with various types of data presents a challenge to workers in 
this research field. 

Most of the previous approaches set a single minimum 
support threshold for all the items or itemsets and identify the 
relationships among binary transactions. In real applications, 
different items may have different criteria to judge their 
importance and quantitative data may exist. We can thus 
divide the fuzzy data mining approaches into two kinds, 
namely single-minimum-support fuzzy-mining (SSFM) and 
multiple-minimum- support fuzzy-mining (MSFM) problems. 
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Several mining approaches [2, 6, 7, 9, 16] have been 
proposed for the SSFM problem. Chan and Au proposed an 
F-APACS algorithm to mine fuzzy association rules [2]. They 
first transformed quantitative attribute values into linguistic 
terms and then used the adjusted difference analysis to find 
interesting associations among attributes. Kuok et al. 
proposed a fuzzy mining approach to handle numerical data 
in databases and derived fuzzy association rules [9]. At nearly 
the same time, Hong et al. proposed a fuzzy mining algorithm 
to mine fuzzy rules from quantitative transaction data [6]. 
Basically, these fuzzy mining algorithms first used 
membership functions to transform each quantitative value 
into a fuzzy set in linguistic terms and then used a fuzzy 
mining process to find fuzzy association rules. Yue et al. then 
extended the above concept to find fuzzy association rules 
with weighted items from transaction data [16]. They adopted 
Kohonen self-organized mapping to derive fuzzy sets for 
numerical attributes. As to the MSFM problem, Lee et al. 
proposed a mining algorithm which used multiple minimum 
supports to mine fuzzy association rules [10]. They assumed 
that items had different minimum supports and the minimum 
support for an itemset was set as the maximum of the 
minimum supports of the items contained in the itemset. 
Under the constraint, the characteristic of level-by-level 
processing was kept, such that the original Apriori algorithm 
could easily be extended to finding large itemsets. 

In the above approaches, the membership functions were 
assumed to be known in advance. Although many approaches 
for learning membership functions were proposed [3, 12, 13, 
14, 15], most of them were usually used for classification or 
control problems. For  fuzzy mining problems, Kaya et al. 
proposed a GA-based approach to derive a predefined 
number of membership functions for getting a maximum 
profit within an interval of user specified minimum support 
values [8]. Hong et al. also proposed a genetic-fuzzy 
data-mining algorithm for extracting both association rules 
and membership functions from quantitative transactions [5]. 
It maintained a population of sets of membership functions 
and used the genetic algorithm to automatically derive the 
resulting one. Its fitness function considered the number of 
large 1-itemsets and the suitability of membership functions. 
The suitability measure was used to reduce the occurrence of 
bad types of membership functions. 

Most of the mentioned approaches were proposed for the 
SSFM problem. In this paper, we thus extend our previous 
approach [5] to solving the MSFM problem. We propose an 
algorithm which combines the clustering, fuzzy and genetic 
concepts to derive minimum support values, membership 
functions and association rules. The proposed approach first 
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uses the k-means clustering approach to gather similar items 
into groups. All items in the same cluster are considered to 
have similar characteristics and are assigned similar values 
for initializing a better population. The values include an 
appropriate number of linguistic terms for each item, its 
reasonable membership functions, and a range of its possible 
minimum support values. The proposed approach then 
generates and encodes each set of minimum support values 
and membership functions into a fixed-length string. Each 
chromosome is then evaluated by the criteria of requirement 
satisfaction and suitability of membership functions to 
estimate its fitness value. The proposed algorithm thus has 
two main advantages. The first one is that the proposed 
approach can derive an acceptable minimum support value 
and membership functions of each item for fuzzy 
association-rule mining. The second one is that the proposed 
approach can get a better initial population, including an 
appropriate number of linguistic terms and the minimum 
support value and membership functions of each item by 
using the clustering technique. 

II. A GENETIC-FUZZY MINING FRAMEWORK FOR ITEMS WITH 
MULTIPLE MINIMUM SUPPORTS 

In this paper, the fuzzy, the genetic and the clustering 
concepts are used together to discover useful fuzzy 
association rules, suitable minimum support values and 
membership functions from quantitative transactions. A 
genetic-fuzzy mining framework shown in Fig. 1. is first 
proposed for achieving the above purpose. It can be divided 
into two phases. The first phase searches for suitable 
minimum support values and membership functions of items 
and the second phase uses the final best set of minimum 
support values and membership functions to mine fuzzy 
association rules. The proposed framework is shown in Fig. 
1. 

The proposed framework maintains a population of sets of 
minimum support values and membership functions, and uses 
the genetic algorithm to automatically derive the resulting 
one. It first uses the k-means clustering approach to gather 
similar items into groups. All items in the same cluster are 
considered to have similar characteristics and are assigned 
similar values when a population is initialized. The values (or 
initialization information) include an appropriate number of 
linguistic terms for each item, its reasonable membership 
functions, and a range of its possible minimum support values. 
It then generates and encodes each set of minimum support 
values and membership functions into a fixed-length string 
according to the initialization information. Each chromosome 
is then evaluated by the requirement satisfaction and the 
suitability of membership functions to estimate its fitness 
value. The evaluation results are utilized to choose 
appropriate chromosomes for mating. The offspring sets of 
membership functions and minimum support values then 
undergo recursive "evolution" until a good set (the highest 
fitness value) has been obtained. Finally, the derived 
minimum support values and membership functions are used 
to mine fuzzy association rules by the approach in [10]. The 
details are described in the next section. 
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Fig. 1. The proposed genetic-fuzzy mining framework for items with multiple 

minimum supports 

III. THE PROPOSED GENETIC-FUZZY MINING APPROACH 

A. Chromosome Representation 
It is important to encode minimum support values and 

membership functions as string representation for GAs to be 
applied to our problem. Several possible encoding 
approaches were described in the past [3, 11, 14, 15]. In our 
approach, each individual consists of two parts, respectively 
for minimum support values and membership functions. The 
first part encodes minimum support values by the 
real-number schema. Each real number represents the 
minimum support value of a certain item. Assume the 
minimum support value of item Ij is encoded with a real 
number αj. The entire set of the minimum support values for 
all items is then formed by concatenating α

1
, α

2
, ..., α

m
 

together, where m is the number of items. The second part 
handles the sets of membership functions for all the items. It 
also adopts the real-number schema. Here we assume the 
membership functions are isosceles-triangular for simplicity 
and use only two parameters to represent each membership 
function as Parodi and Bonelli [11] did. Fig. 2. shows the 
membership functions for item Ij, where R

jk
 denotes the 

membership function of the k-th linguistic term of I
j
, c

jk
 

indicates the center abscissa of fuzzy region R
jk
, and w

jk
 

represents half the spread of fuzzy region R
jk
. As Parodi and 

Bonelli did, we then represent each membership function as a 
pair (c, w). Thus, all pairs of (c, w)'s for a certain item are 
concatenated to represent its membership functions. 
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Fig. 2. Membership Functions of item Ij 
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The set of membership functions MFj for the first item Ij is 
then represented as a substring of c

j1
w

j1
…c

jl
w

jl
, where l is the 

number of linguistic terms of Ij. The entire set of membership 
functions that contains m items is then encoded by 
concatenating substrings of MF

1
, MF

2
, ..., MF

m
. An example 

is given below to demonstrate the process of encoding a set of 
minimum support values and membership functions. 

Example 1: Assume there are four items in a transaction 
database: milk, bread, cookies and beverage. Also assume the 
number of linguistic terms of milk, bread, cookies and 
beverage are 3, 3, 2 and 2, respectively. Assume there exists a 
chromosome as is shown in Fig. 3. The minimum support 
value and the membership functions of each item for the 
chromosome in Fig. 3. are shown in Fig. 4. according to the 
encoding scheme mentioned above. 
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Fig. 3. A chromosome representation of minimum support values and 

membership functions 
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Fig. 4. The minimum support values and the membership functions for the 

chromosome represented in Fig. 3. 

Note that other types of membership functions (e.g. 
non-isosceles trapezes) can also be adopted in our approach. 
For coding non-isosceles triangles and trapezes, three and 
four points are needed instead of two for isosceles triangles. 
Besides, the number of fuzzy sets for each item may be 
different. In this paper, the k-means clustering approach is 
used to decide an appropriate number of linguistic terms for 
each item. 

B. Initial Population 
A genetic algorithm requires a population of feasible 

solutions to be initialized and updated during the evolution 
process. As mentioned above, each individual within the 
population is a set of minimum support values and 
isosceles-triangular membership functions. Each membership 
function corresponds to a linguistic term of a certain item. In 
this paper, the initial set of chromosomes is generated 
according to the initialization information derived by the 
k-means clustering approach on the transactions. It includes 
an appropriate number of linguistic terms, the range of 
possible minimum support values and membership functions 
of each item. 

Let the appearing number (ANj) of the j-th item be the 
number of transactions in which the j-th item appears. The 

average quantitative value (AQVj) is the average value of the 
appearing quantities for the j-th item and is defined as: 

)/(][ 
1

∑
=

=
n

i
jijj ANQuantityAQV , 

where n is the number of transactions and Quantityij is the 
quantity of the j-th item in the i-th transaction. The support 
value (SVj) of the j-th item is the ratio of the transactions in 
which the j-th item appears and is defined as: 

./ nANSV jj =  

The clustering procedure for generating an initial 
population is stated as follows. 

 
The clustering procedure for generating an initial 
population: 
 
STEP 1: Calculate the average quantitative value AQVj and 

the support value SVj for each item Ij from given 
transactions. 

STEP 2: Divide the items into k clusters by the k-means 
clustering approach based on the two attributes (AQV, 
SV). 

STEP 3: For each cluster clusterg, g = 1 to k, find the 
distribution of the quantitative values in the 
transactions. That is, find the appearing number of 
each quantitative value from the items in the same 
cluster. If the appearing number of a quantitative value 
is less than or equal to a break threshold, then it is 
thought of as a break point. 

STEP 4: For each cluster clusterg, g = 1 to k, generate 
intervals according to the break points. If the total 
quantity in an interval is less than or equal to an 
interval threshold, it is removed. The number of the 
remaining intervals is then set as the number of 
linguistic terms for each item in the cluster. 

STEP 5: Generate the first part of a population of P 
individuals according to the support values of the 
items. That is, the minimum support of an item in an 
individual is randomly generated in the range between 
0 and its support value. 

STEP 6: For each cluster clusterg, g = 1 to k, calculate the 
appearing probability of each quantitative value in its 
corresponding interval. 

STEP 7: Generate the second part of a population of P 
individuals according to the number of linguistic terms 
found in STEP 4 and the appearing probabilities of the 
quantitative values of each item found in STEP 6. 
Each interval corresponds to a linguistic term and the 
center of the membership function for the term is 
probabilistically selected according to the appearing 
probabilities of the quantitative values in the interval. 
Half the span (width) of the membership function is 
randomly determined from the range between 1 to the 
interval width. 

After STEP 7, an initial population of individuals can thus 
be generated. 
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C. The Required Number of Large 1-itemsets 
In our approach, the minimum support values of the items 

may be different. It is hard to assign the values. As an 
alternative, the values can be determined according to the 
required number of rules. It is, however, very 
time-consuming to obtain the rules for each chromosome. 
Usually, a larger number of 1-itemsets will result in a larger 
number of all itemsets with a higher probability, which will 
thus usually imply more interesting association rules. The 
evaluation by 1-itemsets is faster than that by all itemsets or 
interesting association rules. Using the number of large 
1-itemsets can thus achieve a trade-off between execution 
time and rule interestingness [5]. 

A criterion should thus be specified to reflect the user 
preference on the derived knowledge. In this paper, the 
required number of large 1-itemsets (RNL) is proposed for 
this purpose. It is the number of large 1-itemsets that a user 
wants to get from an item and can be defined as follows: 

RNLj = ⎣lj* p⎦, 
where lj is the number of linguistic terms of item Ij and p is the 
predefined percentage to reflect users’ preference on the 
number of large 1-itemsets. The minimum support value from 
which the number of large 1-itemsets for an item is close to its 
RNL value is thought of as a good one. For example, assume 
there are three linguistic terms for an item and the predefined 
percentage p is set at 80%. The RNL value is then set as 
⎣3*0.8⎦, which is 2. RNL is thus used in the fitness function 
described in the next section to evaluate the goodness of a 
chromosome. 

D. Fitness and Selection 
In order to develop a good set of minimum support values 

and membership functions from an initial population, the 
genetic algorithm selects parent chromosomes for mating in a 
probabilistic way. An evaluation function is thus used to 
qualify the derived minimum support values and membership 
functions. The fitness function of a chromosome Cq is defined 
as follows: 

)(
)(

)(
q

q
q CySuitabilit

CRS
Cf = , 

where RS(Cq) is the requirement satisfaction defined as the 
closeness of the number of derived large 1-itemsets for 
chromosome Cq to its RNL, suitability(Cq) represents the 
suitability of the membership functions for Cq. RS(Cq) is 
defined as follows: 

∑
=

=
m

j
qjq CRS )RS(C

1

)( , 

where m is the number of items and RS(Cqj) represents the 
closeness of the number of derived linguistic large 1-itemsets 
for the j-th item in chromosome Cq to its RNL. RS(Cqj) is 
defined as follows: 

⎪
⎪
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where RNLj is the required number of large 1-itemsets for 
item j and || 1

jL  is the number of derived large 1-itemsets. 
RS(Cqj) is used to reflect the closeness degree between the 
number of derived large 1-itemsets and the required number 
of large 1-itemset. 

Suitability(Cq) represents the shape suitability of the 
membership functions from Cq and is defined as follows: 

∑∑
==

+
m

j
qj

m

j
qj NumItemCfactorcoverageCfactoroverlap

11

/)(_)(_  

where m is the number of items, overlap_factor(Cqj) 
represents the overlapping factor of the membership 
functions for an item Ij in the chromosome Cq, 
coverage_factor(Cqj) represents the coverage ratio of the 
membership functions for Ij, and NumItem is the number of 
items in the dataset. overlap_factor(Cqj) is the same as that in 
[5] and defined as follows: 

∑
≠

−=
ik jijk

jijk
qj ww

RRoverlap
Cfactoroverlap ],1)1),

),min(
),(

[max(()(_  

where overlap(Rjk, Rji) is the overlap length of Rjk and Rji. 
coverage_factor(Cqj) represents the coverage ratio of a set of 
membership functions for an item Ij and is defined as: 

)max(
)...,,(

1)(_
1

j

jlj
qj

I
RRrangeCfactorcoverage = , 

where range(Rj1, Rj2, …, Rjl) is the coverage range of the 
membership functions, l is the number of membership 
functions for Ij, and max(Ij) is the maximum quantity of Ij in 
the transactions. 

The suitability factor used in the fitness function can 
reduce the occurrence of the two bad kinds of membership 
functions shown in Fig. 5, where the first one is too redundant, 
and the second one is too separate. 
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Fig. 5. Two bad membership functions 

The overlap factor in suitable(Cq) is designed for avoiding 
the first bad case, and the coverage factor is for the second 
one. 

E. Genetic Operators 
Genetic operators are very important to the success of 

specific GA applications. Two genetic operators, the 
max-min-arithmetical (MMA) crossover proposed in [4] and 
the one-point mutation, are used in the proposed 
genetic-fuzzy mining framework. Assume there are two 
parent chromosomes: 

Cu
t = (c1, …, ch, …, cz), and  

Cw
t = (c1

’, …, ch
’, …, cz

’). 
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The max-min-arithmetical (MMA) crossover operator will 
generate the following four candidate chromosomes from 
them: 
1. )...,,...,,( 1

1
1

1
1

11
1

1
++++ = t
Z

t
h

tt cccC , where '1
1 )1( hh
t
h cddcc −+=+ , 

2. )...,,...,,( 1
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1
2

1
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1
2

++++ = t
Z

t
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hh

t
h cddcc )1('1

2 −+=+ , 
3. )...,,...,,( 1

3
1

3
1
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1

3
++++ = t
Z

t
h

tt cccC , where },min{ '1
3 hh
t
h ccc =+ , 

4. )...,,...,,( 1
4

1
4

1
41

1
4

++++ = t
Z

t
h

tt cccC , where },max{ '1
4 hh
t

h ccc =+ , 
 
where the parameter d is either a constant or a variable whose 
value depends on the age of the population. The best two 
chromosomes of the four candidates are then chosen as the 
offspring. 

The one-point mutation operator will create a new fuzzy 
membership function by adding a random value ε (between 
-wjk to +wjk ) to the center or to the spread of an existing 
linguistic term, say Rjk. Assume that c and w represent the 
center and the spread of Rjk. The center or the spread of the 
newly derived membership function will be changed to c + ε 
or w + ε by the mutation operation. Mutation at the center of a 
fuzzy membership function may, however, disrupt the order 
of the resulting fuzzy membership functions. These fuzzy 
membership functions then need rearrangement according to 
their center values.  

IV. THE PROPOSED MINING ALGORITHM 
According to the above description, the proposed 

genetic-fuzzy mining algorithm for mining minimum support 
values, membership functions and fuzzy association rules is 
described below. 

The proposed genetic-fuzzy mining algorithm for items 
with multiple minimum supports: 
STEP 1: Generate a population of P individuals by the 

clustering procedure stated in Section 3; each 
individual is a set of minimum support values and 
membership functions for all the m items. 

STEP 2: Calculate the fitness value of each chromosome by 
the following substeps: 

Substep 2.1: For each transaction datum Di, i=1 to n, and 
for each item Ij, j=1 to m, transform the quantitative 
value vj

(i) into a fuzzy set fjk
(i) represented as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++

jl

i
jl

j

i
j

j

i
j

R
f

R
f

R
f )(

2

)(
2

1

)(
1 .... , 

using the corresponding membership functions 
represented by the chromosome, where Rjk is the k-th 
fuzzy region (term) of item Ij, fjl

(i) is vj
(i)’s fuzzy 

membership value in region Rjk, and l (= |Ij|) is the 
number of linguistic terms for Ij. 

Substep 2.2: For each item region Rjk, , 1 ≤ j ≤ m, calculate 
its scalar cardinality on the transactions as follows: 

∑
=

=
n

i

i
jkjk fcount

1

)( . 

Substep 2.3: For each Rjk, 1 ≤ j ≤ m and 1≤ k ≤ l, check 
whether its countjk is larger than or equal to the 
minimum support value represented in the 

chromosome. If Rjk satisfies the above condition, put it 
in the set of large 1-itemsets (L1). That is: 

L1 = {Rjk | countjk ≥ αj, 1 ≤ j ≤ m and 1 ≤ k ≤ l }. 
SubSTEP 2.4: Set the fitness value of the chromosome as 

the requirement satisfaction divided by suitability(Cq) 
as defined in previous section. That is: 

)(
)(

)(
q

q
q CySuitabilit

CRS
Cf = . 

STEP 3: Execute the crossover operation on the population. 
STEP 4: Execute the mutation operation on the population. 
STEP 5: Use the Roulette-wheel selection operation to 

choose appropriate individuals for the next 
generation. 

STEP 6: If the termination criterion is not satisfied, go to Step 
2; otherwise, do the next step. 

STEP 7: Get the set of minimum support values and 
membership functions with the highest fitness value. 

STEP 8: Mine fuzzy association rules using the set of 
minimum support values and membership functions. 

The set of minimum support values and membership 
functions are thus used to mine fuzzy association rules from 
the given database. The fuzzy mining algorithm proposed in 
[10] is then adopted to achieve this purpose. 

V. EXPERIMENTAL RESULTS 
In this section, experiments made to show the performance 

of the proposed approach are described. They were 
implemented in Java on a personal computer with Intel 
Pentium IV 3.20GHz and 512MB RAM. 64 items and 10000 
transactions were used in the experiments. In each data set, 
the numbers of purchased items in transactions were first 
randomly generated. The purchased items and their quantities 
in each transaction were then generated. An item could not be 
generated twice in a transaction. The initial population size P 
is set at 50, the cluster number k is set at 10, the crossover rate 
pc is set at 0.8, and the mutation rate pm is set at 0.001. The 
parameter d of the crossover operator is set at 0.35 according 
to Herrera et al.’s paper [4]. The percentage of expected 
number of large 1-itemsets is set at 0.8. 

After 500 generations, the final membership functions are 
apparently much better than the original ones. For example, 
the initial minimum support values and membership 
functions of some two items among the 64 items are shown in 
Fig. 6. 
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Fig. 6. The initial minimum support values and membership functions of 

some four items 

In Fig. 6, the membership functions have the two bad types 
of shapes according to the definition in the previous section. 
After 500 generations, the final minimum support values and 
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membership functions for the same four items are shown in 
Fig. 7. 
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Fig. 7. The final minimum support values and membership functions of some 
four items after 500 generations 

It is easily seen that the membership functions in Fig. 7. is 
better than those in Fig. 6. The two bad kinds of membership 
functions are improved in the final results. 

The average fitness values of the chromosomes along with 
different numbers of generations are shown in Fig. 8. As 
expected, the curve gradually goes upward, finally 
converging to a fixed value. 
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Fig. 8. The average fitness values along with different numbers of 

generations 

VI. CONCLUSION AND FUTURE WORKS 
In this paper, we have proposed a genetic-fuzzy mining 

algorithm for extracting multiple minimum support values, 
membership functions and fuzzy association rules from 
quantitative transactions. The proposed algorithm can adjust 
the minimum support value and membership functions for 
each item by genetic algorithms and use them to fuzzify 
quantitative transactions. The proposed algorithm has two 
main advantages. The first one is that the proposed approach 
can derive an acceptable minimum support value and 
membership functions of each item for fuzzy association-rule 
mining. The second one is that the proposed approach can get 
a better initial population, including an appropriate number of 
linguistic terms and the minimum support value and 
membership functions of each item by using the clustering 
technique. Experimental results also show that the 
effectiveness of the adopted clustering technique and the 
fitness function. In the future, we will continuously attempt to 
enhance the genetic-fuzzy mining framework for more 
complex problems. 
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